MATH 320 NOTES, WEEK 10

Section 2.5 Change of Coordinate Matrix.

Recall that $I_{V}: V \rightarrow V$ is the identity linear transformation, i.e. $I_{V}(x)=x$ for all $x \in V$.

Theorem 1. Suppose V is finite dimensional vector space and β, α are two bases for V. The change of coordinate matrix from α to $\beta, Q=\left[I_{V}\right]_{\alpha}^{\beta}$ is such that:
(1) for every vector $x \in V, Q[x]_{\alpha}=[x]_{\beta}$,
(2) Q is invertible and $Q^{-1}=\left[I_{V}\right]_{\beta}^{\alpha}$,
(3) If $T: V \rightarrow V$ is a linear transformation, then $[T]_{\alpha}=Q^{-1}[T]_{\beta} Q$

Proof. For simplicity, denote I_{V} simply by I. (1) follows since

$$
Q[x]_{\alpha}=[I]_{\alpha}^{\beta}[x]_{\alpha}=[I(x)]_{\beta}=[x]_{\beta} .
$$

(2): Q is invertible because I_{V} is invertible. Also, by 2.3,

$$
[I]_{\beta}^{\alpha} Q=[I]_{\beta}^{\alpha}[I]_{\alpha}^{\beta}=[I I]_{\alpha}=[I]_{\alpha}=I_{n} .
$$

Similarly, $Q[I]_{\beta}^{\alpha}=I_{n}$. So $Q^{-1}=[I]_{\beta}^{\alpha}$.
(3): By 2.3, $[T]_{\alpha}=[I T I]_{\alpha}=[I]_{\beta}^{\alpha}[T]_{\beta}[I]_{\alpha}^{\beta}=Q^{-1}[T]_{\beta} Q$.

Computing the change of coordinate matrix:

Let $\alpha=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\beta=\left\{y_{1}, \ldots, y_{n}\right\}$. Then the change of coordinate matrix Q from α to β is such that the i-th column of Q is $\left[x_{i}\right]_{\beta}$.

Example: In \mathbb{R}^{3}, let $\alpha=\{(1,1,1),(0,0,-2),(0,1,1)\}, \beta=\{(1,0,1),(3,0,0),(1,1,0)\}$, and $e=\left\{e_{1}, e_{2}, e_{3}\right\}$.
(1) Let's compute the change of coordinate matrix from α to β :

- $(1,1,1)=1(1,0,1)-\frac{1}{3}(3,0,0)+1(1,1,0)$
- $(0,0,-2)=-2(1,0,1)+\frac{2}{3}(3,0,0)+0(1,1,0)$
- $(0,1,1)=1(1,0,1)-\frac{2}{3}(3,0,0)+1(1,1,0)$

So, the matrix is $\left(\begin{array}{ccc}1 & -2 & 1 \\ -\frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ 1 & 0 & 1\end{array}\right)$
(2) The change of coordinate matrix from α to e is $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & -2 & 1\end{array}\right)$
(3) The change of coordinate matrix from e to α is $B=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ -1 & 1 & 0\end{array}\right)$

$$
\text { Note that } A B=B A=I_{3} \text {, i.e. } B=A^{-1}
$$

(4) The change of coordinate matrix from β to e is $\left(\begin{array}{lll}1 & 3 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$

Definition 2. Suppose that $A, B \in M_{n, n}(F)$. We say that A and B are similar if there is an invertible matrix Q such that $A=Q^{-1} B Q$. We write $A \sim B$

As an exercise, prove the following:
Problem 1. Being similar is an equivalence relation on matrices. I.e. it is reflexive, symmetric and transitive.

Problem 2. Suppose that $T: V \rightarrow V$ is a linear transformation, V is finite dimensional, and α, β are two bases for V. Then $[T]_{\alpha}$ and $[T]_{\beta}$ are similar matrices.

Review of chapter 2

Let $T: V \rightarrow W$ be a linear transformation, V, W vector spaces over F.
(1) The dimension theorem: $\operatorname{dim}(V)=\operatorname{nullity}(T)+\operatorname{rank}(T)$.
(2) If V, W have the same finite dimension, T is one-to-one iff onto.
(3) T is invertible iff T is one-to-one and onto iff V, W are isomorphic. Then we write $V \cong W$.
(4) If $\operatorname{dim}(V)=n$, then $V \cong F^{n}$.
(5) If $\operatorname{dim}(V)=\operatorname{dim}(W)$, then $V \cong W$.

Notation and more facts:
(1) If $\operatorname{dim}(V)=n$ and β is a basis for V, then $[x]_{\beta} \in F^{n}$ is the coordinate vector of x relative to β, and $\phi_{\beta}: V \rightarrow F^{n}$ defined by $\phi_{\beta}(x)=[x]_{\beta}$ is an isomorphism (i.e. it's one-to-one, onto, and linear).
(2) If $T: V \rightarrow W$ linear, V, W finite dimensional, β is a basis for V, γ is a basis for W, then $[T]_{\beta}^{\gamma}$ is the corresponding matrix representation and for any $x \in V$,

$$
[T]_{\beta}^{\gamma}[x]_{\beta}=[T(x)]_{\gamma} .
$$

(3) If $T: V \rightarrow W$ and $T: W \rightarrow Z$ are linear transformation, then so is $U T: V \rightarrow Z$ defined by $U T(x)=U(T(x))$, and if α, β, γ are bases for V, U, Z, respectively, then

$$
\left[U_{\beta}^{\gamma}\right][T]_{\alpha}^{\beta}=[U T]_{\alpha}^{\gamma} .
$$

(4) If A is n by n and e is the standard basis for F^{n}, then $\left[L_{A}\right]_{e}=A$. (L_{A} denotes multiplication by A.)

Inverses:

If $T: V \rightarrow W$ is a one-to-one, onto linear transformation, then its inverse is $T^{-1}: W \rightarrow V$ defined by

$$
T^{-1}(y)=x \text { iff } T(x)=y
$$

An $n \times n$ matrix A is invertible if there is an $n \times n$ matrix B, such that $A B=B A=I_{n}$. Then we write $B=A^{-1}$.

Lemma 3. A is invertible iff L_{A} is invertible
Lemma 4. Let $\operatorname{dim}(V)=\operatorname{dim}(W)=n$, and $T: V \rightarrow W$ be a linear transformation, β any basis for V, γ any basis for W. Then T is invertible iff $[T]_{\beta}^{\gamma}$ is invertible.

Also, in that case, if $A=[T]_{\beta}^{\gamma}$, then $A^{-1}=\left[T^{-1}\right]_{\gamma}^{\beta}$.

