MATH 320 NOTES, WEEK 10

Section 2.5 Change of Coordinate Matrix.

Recall that $I_V: V \to V$ is the identity linear transformation, i.e. $I_V(x) = x$ for all $x \in V$.

Theorem 1. Suppose V is finite dimensional vector space and β , α are two bases for V. The change of coordinate matrix from α to β , $Q = [I_V]^{\beta}_{\alpha}$ is such that:

- (1) for every vector $x \in V$, $Q[x]_{\alpha} = [x]_{\beta}$,
- (2) Q is invertible and $Q^{-1} = [I_V]^{\alpha}_{\beta}$,
- (3) If $T: V \to V$ is a linear transformation, then $[T]_{\alpha} = Q^{-1}[T]_{\beta}Q$

Proof. For simplicity, denote I_V simply by I. (1) follows since

$$Q[x]_{\alpha} = [I]_{\alpha}^{\beta}[x]_{\alpha} = [I(x)]_{\beta} = [x]_{\beta}.$$

(2): Q is invertible because I_V is invertible. Also, by 2.3,

$$[I]^{\alpha}_{\beta}Q = [I]^{\alpha}_{\beta}[I]^{\beta}_{\alpha} = [II]_{\alpha} = [I]_{\alpha} = I_n.$$

Similarly, $Q[I]^{\alpha}_{\beta} = I_n$. So $Q^{-1} = [I]^{\alpha}_{\beta}$. (3): By 2.3, $[T]_{\alpha} = [ITI]_{\alpha} = [I]^{\alpha}_{\beta}[T]_{\beta}[I]^{\beta}_{\alpha} = Q^{-1}[T]_{\beta}Q$.

Computing the change of coordinate matrix:

Let $\alpha = \{x_1, ..., x_n\}$ and $\beta = \{y_1, ..., y_n\}$. Then the change of coordinate matrix Q from α to β is such that the *i*-th column of Q is $[x_i]_{\beta}$.

Example: In \mathbb{R}^3 , let $\alpha = \{(1,1,1), (0,0,-2), (0,1,1)\}, \beta = \{(1,0,1), (3,0,0), (1,1,0)\},\$ and $e = \{e_1, e_2, e_3\}.$

(1) Let's compute the change of coordinate matrix from α to β :

- $(1,1,1) = 1(1,0,1) \frac{1}{3}(3,0,0) + 1(1,1,0)$
- $(0,0,-2) = -2(1,0,1) + \frac{2}{3}(3,0,0) + 0(1,1,0)$
- $(0,1,1) = 1(1,0,1) \frac{2}{3}(3,0,0) + 1(1,1,0)$

So, the matrix is
$$\begin{pmatrix} 1 & -2 & 1 \\ -\frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ 1 & 0 & 1 \end{pmatrix}$$
(2) The change of coordinate matrix from α to e is $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & -2 & 1 \end{pmatrix}$

(3) The change of coordinate matrix from
$$e$$
 to α is $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ -1 & 1 & 0 \end{pmatrix}$

Note that
$$AB = BA = I_3$$
, i.e. $B = A^{-1}$.
(4) The change of coordinate matrix from β to e is $\begin{pmatrix} 1 & 3 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$

Definition 2. Suppose that $A, B \in M_{n,n}(F)$. We say that A and B are similar if there is an invertible matrix Q such that $A = Q^{-1}BQ$. We write $A \sim B$

As an exercise, prove the following:

Problem 1. Being similar is an equivalence relation on matrices. I.e. it is reflexive, symmetric and transitive.

Problem 2. Suppose that $T: V \to V$ is a linear transformation, V is finite dimensional, and α, β are two bases for V. Then $[T]_{\alpha}$ and $[T]_{\beta}$ are similar matrices.

Review of chapter 2

Let $T: V \to W$ be a linear transformation, V, W vector spaces over F.

- (1) The dimension theorem: $\dim(V) = nullity(T) + rank(T)$.
- (2) If V, W have the same finite dimension, T is one-to-one iff onto.
- (3) T is invertible iff T is one-to-one and onto iff V, W are isomorphic. Then we write $V \cong W$.
- (4) If $\dim(V) = n$, then $V \cong F^n$.
- (5) If $\dim(V) = \dim(W)$, then $V \cong W$.

Notation and more facts:

- (1) If dim(V) = n and β is a basis for V, then $[x]_{\beta} \in F^n$ is the coordinate vector of x relative to β , and $\phi_{\beta} : V \to F^n$ defined by $\phi_{\beta}(x) = [x]_{\beta}$ is an isomorphism (i.e. it's one-to-one, onto, and linear).
- (2) If $T: V \to W$ linear, V, W finite dimensional, β is a basis for V, γ is a basis for W, then $[T]^{\gamma}_{\beta}$ is the corresponding matrix representation and for any $x \in V$,

$$[T]^{\gamma}_{\beta}[x]_{\beta} = [T(x)]_{\gamma}.$$

(3) If $T: V \to W$ and $T: W \to Z$ are linear transformation, then so is $UT: V \to Z$ defined by UT(x) = U(T(x)), and if α, β, γ are bases for V, U, Z, respectively, then

$$[U_{\beta}^{\gamma}][T]_{\alpha}^{\beta} = [UT]_{\alpha}^{\gamma}.$$

(4) If A is n by n and e is the standard basis for F^n , then $[L_A]_e = A$. (L_A denotes multiplication by A.)

Inverses:

If $T: V \to W$ is a one-to-one, onto linear transformation, then its **inverse** is $T^{-1}: W \to V$ defined by

$$T^{-1}(y) = x$$
 iff $T(x) = y$.

An $n \times n$ matrix A is **invertible** if there is an $n \times n$ matrix B, such that $AB = BA = I_n$. Then we write $B = A^{-1}$.

Lemma 3. A is invertible iff L_A is invertible

Lemma 4. Let dim(V) = dim(W) = n, and $T : V \to W$ be a linear transformation, β any basis for V, γ any basis for W. Then T is invertible iff $[T]^{\gamma}_{\beta}$ is invertible.

Also, in that case, if $A = [T]^{\gamma}_{\beta}$, then $A^{-1} = [T^{-1}]^{\beta}_{\gamma}$.